Clean ABAP

Names

Use descriptive names
max_wait_time_in_seconds, ise3166tab

Language

Prefer object orientation over
imperative programming

|.e. classes over functions and reports
Prefer functional over procedural

language constructs
E.g. index += 1orindex = index + 1
Instead of ADD 1 to index

Comments

Express yourself in code, not in
comments

Delete code instead of commenting it

Formatting

Be consistent

Optimize for reading, not for writing
Constants

Use constants instead of magic

numbers
E.g. typekind_date instead of 'D"

Tables

Use the right table type
HASHED: large, filled at once, never modified,
read often

SORTED: large, always sorted, filled over time or
modified, read often
STANDARD: small, array-like

Booleans

Use XSDBOOL to set Boolean variables
empty = xsdbool(itab IS INITIAL)

Conditions
Try to make conditions positive

IF has_entries = abap_true.
Consider decomposing complex

conditions

DATA(example_provided) = xsdbool(..)
IF example_provided = abap_true AND
one_example_fits = abap_true.

Ifs
Keep the nesting depth low

|

Regular expressions

Consider assembling complex regular

expressions

CONSTANTS classes ..

CONSTANTS interfaces ..

.. = |{ classes }|{ interfaces }|.

Classes: Object orientation
Prefer objects to static classes

Prefer composition over inheritance
DATA delegate TYPE REF TO

Clean ABAP The Golden Rules v1.1.1

The Golden Rules

Don’t mix stateful and stateless in the
same class

Classes: Scope

Members PRIVATE by default,
PROTECTED only if needed
Testing: Principles

Write testable code
There are no tricks to writing tests, there are only
tricks to writing testable code. (Google)

Enable others to mock you
CLASS my_super_object DEFINITION.
INTERFACES you_can_mock_this.

Readability rules
given_some_data().
do_the_good_thing().
and_assert_that_it_worked().

Test classes

Call local test classes by their purpose
CLASS unit_tests
CLASS tests for_the class_under_test

Code under test \

Test interfaces, not classes
DATA cut TYPE REF TO some_interface

DATA—cutTFYPE REFTO-seome—class
Use test seams as temporary
workaround
They are not a permanent solution!
Don’t misuse LOCAL FRIENDS to invade
the tested code

CLASS—unit—tests LOCALFRIENDS—<ut+
cut->db_reader = stub_db_reader

Test Methods |

Test methods names: reflect what’s

given and expected
METHODS accepts_emtpy_user_input
METHOBS—test—1

Use given-when-then
given_some_data().
do_the_good_thing().
assert_that_it_worked().

“When” is exactly one call

given_some_data().
do_the_good_thing().

assgrt_that:it_warked(Do

Assertions \

Few, focused assertions
Fritial(i .

assert:equgls(act = itab exp = exp).

Use the right assert type
assert_equals(act = itab exp = exp).

assert_true(—itab-=—exp)~

Assert content, not quantity
assert_contains_message(key)

5= 3
P a

Assert quality, not content
assert_all_lines_shorter_than(..)

PUBLIC

Methods: Object orientation

Prefer instance to static methods
METHODS a

CLASS-METHODS—a

Public instance methods should be part

of an interface
INTERFACES the_interface.

METHOBS—=
Methods: Method body

Do one thing, do it well, do it only

Descend one level of abstraction

do_something_high level ().
ElEh_lE"El_ep) = = ‘b_}‘F.

Keep methods small

3-5 statements, opre-page,1000tnes

Methods: Parameter number

Aim for few IMPORTING parameters, at

best less than three
METHODS a3 IMPORTING b-c-d-e

Split methods instead of adding

OPTIONAL parameters
METHODS a IMPORTING b
METHODS ¢ IMPORTING d
METHODS—x

—IMPORTING b
—— b

RETURN, EXPORT, or CHANGE exactly

one parameter
METHODS—do—it

|§§

Error handling: Return codes

Prefer exceptions to return codes
METHODS check RAISING EXCEPTION
METHODS—check RETURNING—result

Don’t let failures slip through
DATA(result) = check(input)
IF result = abap_false.

Error handling: Exceptions

Exceptions are for errors, not for
regular cases
Use class-based exceptions

METHODS do_it RAISING EXCEPTION
METHODS do_it EXCEPTIONS

Error handling: Throwing

Throw one type of exception
METHODS—a—RAISING EXCERTION b—c—d

Throw CX_STATIC_CHECK for
manageable situations

RAISE EXCEPTION no_customizing
Throw CX_NO_CHECK for usually

unrecoverable situations
RAISE EXCEPTION db_unavailable

Error handling: Catching

Wrap foreign exceptions instead of

letting them invade your code

CATCH foreign INTO DATA(error).
RAISE EXCEPTION NEW my(error).

—RAISEEXCEPTION—error-

https://github.com/SAP/styleguides/blob/master

/clean-abap/cheat-sheet/CheatSheet.md

